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TRUNCATION ERRORS IN THE MODAL VIBRATION ANALYSIS OF  THE ROTOR 
SYSTEMS 

Professor Leontiev M.K. 
 

ABSTRACT 
The accuracy of two modal methods - modal reanalysis of locally modified structure and 

modal synthesis was evaluated with regard to natural frequencies and mode shapes of rotor 
systems. It’s possible to diminish the modal truncation errors using both the dynamic 
transformation method and inertial loading method, which are observed in this lecture. A 
comparison of these methods is presented here. Conclusions and recommendations are made 
based upon the results of these investigations. 

NOMENCLATURE 
{ } { } { }qqq ��� ,, - generalized displacement, velocity and acceleration vectors;  

[ ]k - stiffness matrix; 

[ ]c  - damping matrix; 

[ ]Ω2  -eigenvalue diagonal matrix; 

[ ]φ - orthonormal eigenvector matrix; 

{ }f t( )  - force matrix; 

ω i  - frequency of harmonic vibration; 

[ ]I  - unity matrix; 

[ ]T
 - transpose of matrix [ ]  

1.  INTRODUCTION 
For a dynamic system with a large number of degrees of freedom the solution of motion 

equations is too difficult even for modern digital computers to hand economically. It’s possible 
to solve this problem resorting to modal methods in which the dynamic response of system is 
represented by its free vibration modes. However, the modal methods are approximated and 
errors might to be large. The higher modes are omitted to save the computing time the less 
accuracy is observed in the solution. 

Modal methods are used extensively for calculations of flexible rotor systems and it’s 
necessary to continue investigations of these methods with regard to the errors. 

2.  MODAL REANALYSIS OF LOCALLY MODIFIED STRUCTURE  
If modifications of stiffness matrix of a dynamic system don’t lead to large changes of 

frequency spectrum and mode shapes, the modal reanalysis of locally modified structures may be 
used with efficiency. The basic equations of the method are presented in [ 1 ]. 

Suppose now that there is a stiffness change in the link connecting the s-th degree of 
freedom and t-th degree of freedom of the rotor dynamic system. In the case the system has the 
following modal equation 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ] { })(2 tfqkqqcqI Tφ=∆+Ω++ ����                               (1) 

where [ ]{ }∆k q - modal contribution of changed link. 

 [ ] [ ] [ ]∆ ∆ Γ Γ ∆ Γ Γk k kst ss st st tt ts= − + −                                                  (2) 

[ ] { } { }Γst s s sn
T

t t tn= φ φ φ φ φ φ1 2 1 2... ...                                 (3) 
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The total effect of several modified links in the equation of motion is the sum of all 
individual contributions 

[ ] [ ]( )∆ ∆k k
st

w

z

w

=
=
�

1

  ,                                                                         (4) 

where z - number of modified links. 
The accuracy of solution depends on the number of modes - ‘the basis’, used in the 

reanalysis of locally modified structure. Since this method is a base in the analysis of non-linear 
and transient rotor-bearing dynamic systems, it’s clear the importance of the accuracy problem.  

Consider the accuracy of this method regard a rotor supported on three bearings, Fig 1. 

 
Fig. 1  Line rotor-bearing model 

 
 The rotor model has a total of 56 degrees of freedom, Table 1. 

Table 1 
i l i,i+i1 Ri ri Ri+1 ri+1 Mi Jdi 
1 45 45.5 40 45.5 40   
2 36 46.5 40 46.5 40   
3 41 50 40 50 40   
4 47 63 45 124 115   
5 40     64.5 3.9 
6 195 149.5 146 149.5 146 64.5 3.9 
7 27     41.5 2.9 
8 170 148.5 145 148.5 145 41.5 2.9 
9 28     33.5 2.4 

10 28 130 118 90 75 33.5 2.4 
11 68 76 55 76 55   
12 40 76 48 76 48   
13 105 60 48 60 48   
14 200 60 48 60 48   
15 200 60 48 60 48   
16 200 60 48 60 48   
17 200 60 48 60 48   
18 200 64 54 64 54   
19 200 64 54 64 54   
20 200 64 54 64 54   
21 200 64 54 64 54   
22 200 64 54 64 54   
23 200 64 54 64 54   
24 100 64 54 64 54   
25 28.5 66 54 74.5 63.3   
26 30 74.5 63.3 85 72.3   
27 71 85 72.5 148 140   
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28      147 7.9 
 
The rotor data are presented in table: i - number of section; l - length of station, mm; R - 

outer radius, mm; r - internal radius, mm; M - concentrated mass (disk) in i-th section, kg; J - 
transverse moment of inertia in i-th section, kgm.  The station with vanish volumes of radius are 
given as absolutely stiff. 

Problem 1.  Investigate a method of reanalysis when all bearing stiffness are increased by 
one order. As basis use a set of mode shapes, obtained with the next bearing stiffness 
k1=k2=k3=107 N/m. 

Such a problem, for example, is connected with large non-linearity of dampers, due to a 
large amplitude whirl. 

The results of eingenvalue problem, obtained by means of reanalysis and transfer matrix 
method are presented in Table 2. 

Table 2 
 Natural frequencies, min-1 
 Basis Rotor model             k1=k2=k3=108 N/m.  

N k1=k2=k3=1
07 N/m. 

Modes in basis (problem size) Direct 

  5 10 20 30 solution 
1 2156 3696 3682 3680 3680 3681 
2 2667 6539 6533 6531 6530 6530 
3 3491 9565 9462 9439 9437 9434 
4 6989 10860 10680 10620 10620 10620 
5 13680 17720 17270 17220 17220 17220 
6 26060  27200 27180 27180 27180 
7 44950  45260 45230 45230 45230 
8 67060  67396 67380 67380 67390 
9 88620  89300 89280 89280 89290 

10 111700  112167 112130 112130 112100 
 
To estimate errors the mode shapes were normalized such the sum of the absolute values 

of elements in modes be equal to one 

φ ij
j

n

=
� =

1

1                                                                      (5) 

The percentage errors in the rotor model modes were computed using a standard 
expression 

( )∆ = −
=
� φ φij ij direct
i

n

( )

2

1

                                                (6) 

Table 3 
 Frequency and mode errors, % 

N Problem size 
 5 10 20 30 
 freq. mode freq. mode freq. mode freq. mode 
1 0.42 2.16 0.04 0.14 0.00 0.02 0.00 0.01 
2 0.15 1.02 0.07 0.15 0.03 0.04 0.02 0.03 
3 1.39 5.66 0.29 2.93 0.05 0.39 0.03 0.24 
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4 2.30 12.48 0.69 4.11 0.09 0.50 0.05 0.30 
5 2.97 18.36 0.34 1.78 0.04 0.14 0.03 0.1 
6   0.09 1.43 0.01 0.11 0.01 0.08 
7   0.02 1.02 0.00 0.07 0.00 0.05 
8   0.01 1.23 0.00 0.09 0.00 0.06 
9   0.01 1.70 0.00 0.13 0.00 0.05 

10   0.01 1.78 0.00 0.11 0.00 0.07 
 
Problem 2.  Investigate a method of reanalysis when all bearing stiffness are decreased by 

one order. As basis use a set of mode shapes, obtained with the next bearing stiffness 
k1=k2=k3=109 N/m. 

The results are presented in Tables 4 and 5. 
Table 4 

 Natural frequencies, min-1 
 Basis Rotor model             k1=k2=k3=108 N/m.  

N k1=k2=k3=1
09 N/m. 

Modes in basis (problem size) Direct 

  5 10 20 30 solution 
1 3926 3684 3746 3703 3690 3681 
2 9578 7228 6916 6753 6700 6529 
3 21080 11400 10250 9837 9688 9434 
4 24860 16990 13470 12120 11203 10620 
5 26880 22620 20380 18350 17710 17220 
6 41530  29180 27710 27400 27180 
7 52430  45790 45410 45300 45230 
8 69580       67930 67590 67450 67390 
9 94260  90200 89600 89390 89290 

10 116600  112800 112320 112190 112100 
 

Table 5 
 Frequency and mode errors, % 

N Problem size 
 5 10 20 30 
 freq. mode freq. mode freq. mode freq. mode 
1 4.90 18.70 1.80 5.87 0.61 2.43 0.43 1.46 
2 10.70 18.64 5.90 6.09 3.40 3.62 2.60 2.90 
3 20.80 114.70 8.60 52.18 4.20 34.70 2.60 17.13 
4 60.00 81.74 26.90 68.44 14.10 43.88 5.50 20.09 
5 31.40 92.27 18.30 40.34 6.60 15.11 2.90 6.26 
6   7.40 22.36 1.90 7.68 0.80 3.36 
7   1.20 8.93 0.40 2.88 0.15 0.98 
8   0.80 10.12 0.30 3.45 0.10 0.81 
9   1.00 13.83 0.36 4.33 0.11 0.91 

10   0.50 13.88 0.17 3.67 0.05 0.72 
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Comparing the results of problems 1 and 2, it should be noted that the basis, obtained 
with lower bearing stiffness and used in the reanalysis of rotor model appear to be with less 
errors than the basis, obtained with high stiffness coefficients. 

3.   COMPONENT MODE SYNTHESIS 
Due to the component mode synthesis a large system is partitioned by a truncated set of 

vibration modes (basis), obtained in any method. The subsystems are coupled through modal 
connecting elements into a set of complex system equations of reduced order. The main 
equations of motion of dynamic system are represented in [ 2 ] and [ 3 ]. The modal equations of 
a dynamic system, consisting of w - subsystems is of the form 
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 Consider a linear element, connecting the s-th degree of freedom in subsystem p and the 
t-th degree of freedom in subsystem  q.  The contribution in the modal stiffness and the damping 
of modal equation are  

[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
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where 

[ ] { } { })(
ln

)(
2

)(
1

)()(
2

)(
1

)( ...... jj
l

j
l

Ti
km

i
k

i
k

ij
kl φφφφφφ=Γ                               (9) 

 The total effect due to several linear linking elements is the sum of all individual 
contributions.  
 This method is a powerful tool in determining the dynamic response of large structures. 
However, certain quantity of errors is always introduced in some modes less the number of 
degrees of freedom be presented in system. To estimate the accuracy of component mode 
synthesis with regard to rotor systems consider two problems. 

 Problem 3 Using a component mode synthesis determine the frequencies and free modes 
of a rotor, consisting of two coaxially mounted shafts, Fig.2.  
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Fig. 2  Line rotor system model 

 
 Disregarding the intershaft linking elements distinguish two subsystems.  Geometrical 
data are tabulated in Table 6. The stiffness coefficients of intershaft links and supports are 
k1=k2=k3=0.1x109 N/m.  

Table 6 
Subsystem 1 

i li,i+1, mm Ri, mm ri, mm Ri+1, mm ri+1, mm 
1 250 100 0 100 0 
2 250 100 0 100 0 
3 250 100 0 100 0 
4 250 100 0 100 0 

Subsystem 2  
i li,i+1, mm Ri, mm ri, mm Ri+1, mm ri+1, mm 
1 250 100 0 100 0 
2 250 100 0 100 0 
3 250 100 0 100 0 
4 250 100 0 100 0 
5 250 100 0 100 0 
6 250 100 0 100 0 

 
 The eigenvalue problem has been solved for each subsystem using a finite element 
method. The determined sets of modes were used in the modal synthesis. Direct computing of the 
whole rotor system was performed by transfer matrix method developed for multi-shaft rotor 
systems.  

The results of both the component mode synthesis and the transfer matrix method are 
compared in Table 7. 

The analysis of computing results shows good accuracy of the method for multi-shaft 
rotor systems. The percentage error in frequencies is less than 1% according to data in Table 7.  
Next conclusion - in practice for linear systems the errors depend insignificantly on the number 
of modes. The modes with the operating speed range are sufficient to obtain good accuracy. The 
largest error in the modes due to modal truncation is less than 1% even for the problem size of 
3+3. 

Table 7 
 Frequencies, min-1 
   Rotor model 

N Subsystem 1 Subsystem 2  Modal synthesis 
   Direct 

solution 
Problem size 

    3+3 5+5 
1 8858 6981 7726 7725 7724 
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2 22627 14081 14335 14350 14343 
3 67951 36614 14773 14780 14771 
4 130797 73206 24101 24136 24108 
5 204853 117687 36929 36925 36924 

 
Problem 4.  Using a component mode synthesis determine the frequencies and free modes 

of a single shaft rotor with three supports, Fig 1. The solution must be computed with the basis 
sets for two subsystems obtained by breaking the rotor in the second support point.  
The results are presented in Table 8. 

Table 8 
 Frequency and mode errors, % 

N Problem size 
 20% (5+7) 50% (12+17) 100% (24+34) 
 freq. mode freq. mode freq. mode 
1 0.15 3.51 0.02 0.76 0.00 0.00 
2 2.78 9.26 0.57 1.95 0.00 0.00 
3 0.07 2.14 0.00 0.36 0.00 0.00 
4 4.09 11.97 1.02 2.75 0.00 0.00 
5 11.60 22.51 2.51 5.35 0.00 0.00 
6 0.81 8.85 0.26 2.60 0.00 0.00 
7 6.59 44.87 2,17 8.04 0.00 0.00 
8 7.93 95.95 0.69 26.48 0.00 0.00 
9 0.90 19.21 0.33 6.22 0.00 0.00 

10 22.35 139.06 0.03 13.93 0.00 0.00 
 

 It should be noted that the errors depend essentially on the number of truncated modes. 
An acceptable result for the first four modes of examined rotor system is observed for a problem 
size of 12+17 (50% of modes). In this case the percentage frequency errors are less than 1% and 
the mode errors are less than 3%. 

4. THE DYNAMIC TRANSFORMATION METHOD IN MODAL METHODS 
 The accuracy of modal methods can be reached by increasing the number of modes in the 
basis. However, in this case the dynamic analysis will require a solution of large order sets of 
modal equations of motion and may be time consuming. Therefore it’s necessary to use methods, 
which reduce the truncation errors without increasing the problem size. 
 One of such methods is a dynamic transformation method. The concept of this method 
has been developed in [ 4 ]. The dynamic transformation method is set up from the full 
differential equations of motion and takes into account the influence of higher modes which are 
not in the basis. 
 For undamped system of several degrees of freedom, the equation of motion in modal 
form becomes as 

[ ]{ } [ ]{ } { }− + =ω 2 2 0I q qΩ                                                        (10) 

 Partitioned the coordinates in two parts: retained modes in basis { }qL  and truncated 

modes { }qR . The truncated modes are higher modes, extracted from equations of motion. As a 

result of this action there is a sum of errors. 
 For both types of modal coordinates an equation of motion is 
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 Vector { }qR can be written as 

{ } [ ]{ }q R qR L=                                                                                (12) 

where  

[ ] [ ] [ ][ ] [ ] [ ][ ]R I Ii R i L= − + −
−

ω ω2 2
1

2 2Ω Ω                                            (13) 

 Designate a dynamic transformation matrix by [T].  Then from equation  
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obtain a dependence between [R] and [T] 
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Hence we can write a dynamic equation of motion in terms of { }qL  and [T]. 
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When in equation ω i
2 =0, this method is reformed to the static transformation method of 

Guyan [ 5 ]. The dynamic transformation method can easily be implemented in any modal 
method. 

Since the formation of matrix [ T ] is not consuming process, in most cases of a dynamic 
transformation method we can take into account all truncated coordinates. 

Consider the implementation of a dynamic transformation method in the modal reanalysis 
of locally modified structures and in the component mode synthesis. 

Problem 5 Using a method of modal analysis of locally modified structures and a 
dynamic transformation method determine natural frequencies and modes for a rotor model with 
bearing stiffness coefficients  k1=k2=k3=109 N/m, Fig 1. As a basis use the set of mode shapes, 
obtained with bearing stiffness k1=k2=k3=107 N/m. Determine the errors of natural frequencies 
and modes. 

For computations 20% of mode shapes were used in the basis (problem size of 11). A 
dynamic transformation method use 20%, 50% and 100% of truncated modes in succession. 
The result of this investigation is shown in Table 9. 

Table 9 
 Frequency error, % Mode error, % 

N DT problem size DT problem size 
 0 % 20 % 50 % 100 % 0 % 20 % 50 %  100 % 
1 0.06 0 0 0 0.25 0.20 0.22 0.23 
2 0.14 0.03 0 0 0.61 0.55 0.55 0.56 
3 0.51 0.20 0.01 0 3.70 1.72 1.92 1.97 
4 6.17 0.67 0.13 0.05 15.04 12.32 12.77 12.83 
5 0.66 0.36 0.02 0 12.90 2.15 1.390 1.35 
6 1,20 0.18 0.04 0.02 9.50 5.57 6.03 6,11 
7 5.70 0.63 0.19 0.13 18.24 15.80 15.71 15.71 
8 1.47 0.15 0.07 0.06 18.00 11.31 11.03 11.00 
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9 1.20 0.23 0.15 0.14 16.68 13.91 13.82 13.81 
10 1.40 0.40 0.33 0.31 24.01 20.42 20.20 20.17 

It should be noted that the application of a dynamic transformation method reduces the 
errors of natural frequencies; however the errors of mode shapes are practically without changes. 

Problem 6.  Using a component mode synthesis and a dynamic transformation method 
determine natural frequencies and modes for a single rotor with three supports, Fig 1. The 
solution must be computed with the basis sets for two subsystems obtained by breaking the rotor 
in the second support point.  

20% mode shapes were included in the basis of each subsystem. The results obtained both 
for dynamic transformation method and without it are presented in Table 10.  

Table 10 
 Frequency error, % Mode error, % 

N DT problem size DT problem size 
 0 % 20 % 50 % 100 % 0 % 20 % 50 %  100 % 
1 0.15 0.04 0.01 0 3.51 1.08 0.43 0.13 
2 2.78 0.81 0.31 0 9.26 2.82 1.23 0.62 
3 0.07 0.01 0.05 0 2.14 0.56 0.25 0.15 
4 4.09 1.38 0.55 0 11.94 4.04 2.01 2.13 
5 11.60 3.45 1.36 0.20 22.51 7.82 3.90 2.53 
6 0.81 0.34 0.15 0 8.85 3.20 1.45 1.13 
7 6.59 3.04 1.30 0.10 44.87 13.49 7.49 5.92 
8 7.03 1.14 0.37 0.03 95.95 39.44 16.78 6.26 
9 0.90 0.46 0.26 0.08 19.21 7.74 6.30 7.14 

10 22.35 7.02 3.66 1.77 139.06 127.66 124.60 122.99 
As a result of this investigation we conclude that a dynamic transformation method 

reduces the errors of natural frequencies but the errors of mode shapes were remained large 
again. 

5.   THE INERTIAL LOADING METHOD 
Here we suggest a new method allowing to considerably increase the accuracy both when 

computing the frequencies and in forming the modes practically without increasing the machine 
computing time. This is an inertial loading method. 

The concept of this method is in introduction into the basis set of frequencies and mode 
shapes of such modes and by those degrees of freedom where changes are taking place.  

In using the modal method for locally modified structures we introduce additional inertial 
loading of a dynamic system by degrees of freedom where local changes of the elastic or inertial 
parameter are taking place. In using the modal synthesis we load the boundaries of subsystems in 
places of their connections. 

Then we calculate the basis set frequencies and mode shapes. The included load is then 
excluded from a dynamic system at a final stage of calculations by means a locally modified 
structure method. 

Study the result of inertial loading method in the early considered problems 5 and 6.  
Problem 7. Using a method of modal analysis of locally modified structures and an 

inertial loading method determine natural frequencies and modes for the rotor model with 
bearing stiffness coefficients  k1=k2=k3=109 N/m, Fig 1. As a basis use the set of mode shapes, 
obtained with bearing stiffness k1=k2=k3=107 N/m. Determine the errors of natural frequencies 
and modes.  



Truncation errors in the modal vibration analysis of the rotor systems 

 10 

In places of location of all three supports when calculating the initial set of mode shapes 
we added an inertial element of 102 kg mass. When passing over to a new set with a support 
stiffness  109 N/m, this load was removed. Table 11 illustrates the results of calculations. 

One can observe a considerable increase of accuracy in our calculations both in natural 
frequency and modes. So, already at 20% the first nine modes result a very high accuracy. Any 
specification of higher mode shapes requires widening of the basis. 

Table 11 
 Frequency error, % Mode error, % 

N Problem size Problem size 
 10 % 20 % 10% 20 % 
1 0.03 0.00 1.40 0.09 
2 0.04 0.00 0.40 0.03 
3 0.15 0.00 0.16 0.00 
4 0.60 0.03 2.57 0.05 
5 0.76 0.03 3.42 0.14 
6 5.60 0.05 36.90 0.41 
7  0.18  1.07 
8  0.03  1.35 
9  0.11  2.56 

10  0.21  32.90 
Problem 8.  In solving the problem of synthesis the compatible boundaries of subsystems 

were loaded by an inertia moment Jd , equaling 10 kgm2  and at a final stage of computations this 
load was removed. Decomposition was carried out by 20% of modes from each subsystem. The 
results, given in Table 14, show considerable increase of accuracy, especially by the mode 
shapes. 

Table 13 
 Frequency error, % Mode error, % 

N without loading with loading without loading with loading 
1 0.15 0.00 3.51 0.07 
2 2,78 0.01 9.26 0.11 
3 0.07 0.01 2.14 0.12 
4 4.09 0.07 11.97 0.54 
5 11.60 0.23 22.51 1.41 
6 0.81 0.01 8.85 2.95 
7 6.59 0.20 44.87 2.42 
8 7.93 0.45 95.95 4.01 
9 0.90 10.40 19.21 45.50 

10 22.35 82.50 139.06 105.00 
A large error by the last modes is connected with insufficient amount of modes in the 

basis. 

6.   CONCLUSIONS 
The results of studies on the accuracy of modal methods give us a possibility tj make the 

following main conclusions.  
1. A method of reanalysis of locally modified structures allows to reduce a time of 

computation as compared to direct methods. 
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2. It is preferable to use in the method of reanalysis of locally modified structures a basis 
obtained for minimum possible stiffness values of the rotor supports within the range of their 
possible change. 

3. In using of modal reanalysis method to obtain satisfactory results we may recommend 
to set up a basis by the number of modes from the range not less than 2, 3 times exceeding the 
frequency range in which a solution is sought for. 

4. A modal synthesis, used for solving the problems of second type (Fig 2), may give 
somewhat worse results as against the problem of the first type (Fig 1) and hence in every 
particular case a preliminary estimate of the accuracy is required for the results being obtained in 
order to define the boundaries of the basis set. 

5. Methods of dynamic transformation and inertial loading considerably reduce the errors 
of modal methods, connected with a truncation of higher mode shapes. 

6. High accuracy of the results and simplicity make the inertial loading method more 
preferable as compared with a dynamic transformation method. 
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