BACKGROUNDS

TRANSIENT RESPONSE OF ROTOR MODEL

Fig.1 Squeeze-film damper model

		Table 1
Approximate models of the damper performances (laminar flow, ε = const)		
Type of	"Short" damper	
film	-	
	K	С
π – film	$\frac{RL^{3}\mu\omega}{2}\cdot\frac{2\varepsilon}{(1-\varepsilon)^{2}}$	$\frac{RL^{3}\mu}{\pi}$. $\frac{\pi}{\pi}$
	$\delta^3 (1-\mathcal{E}^2)^2$	$2\boldsymbol{\delta}^{3} (1-\boldsymbol{\varepsilon}^{2})^{\frac{\gamma_{2}}{2}}$
2π - film	0	$RL^{3}\mu$ π
		$\overline{\delta^3} \cdot \overline{(1-\varepsilon^2)^{\frac{3}{2}}}$
Type of film	"Long" damper	
	K	С
	$R^{3}L\mu\omega$ 24 ε	$R^3L\mu$ 12π
π – film	$\frac{1}{\delta^3} \frac{1}{(2+\varepsilon^2)(1-\varepsilon^2)}$	$\overline{\delta^3} \cdot \overline{(2+\varepsilon^2)(1-\varepsilon^2)^{\frac{1}{2}}}$
	0	$R^{3}L\mu$ 24 π
2π - film		$\overline{\delta^3} \cdot \overline{(2+\varepsilon^2)(1-\varepsilon^2)^{\frac{1}{2}}}$

Fig. 2. Pressure distribution in squeeze-film damper $\delta = 0.228 \text{ mm}; 1 = 12.7 \text{ mm}; D = 104.3 \text{ mm}; \mu = 0.0217; n = 1000 \text{ rpm}; \epsilon = 0.4$ Reynolds boundary conditions

Fig. 3. Damping characteristics of squeeze-film damper $\delta = 0.228 \text{ mm}; 1 = 12.7 \text{ mm}; D = 104.3 \text{ mm}; \mu = 0.0217; n = 1000 \text{ rpm}; \epsilon = 0.4;$ Red line – Reynolds boundary conditions

Fig. 4. Stiffness characteristics of squeeze-film damper $\delta = 0.228 \text{ mm}; 1 = 12.7 \text{ mm}; D = 104.3 \text{ mm}; \mu = 0.0217; n = 1000 \text{ rpm supports}; \epsilon = 0.4;$ Red line – Reynolds boundary conditions

Type of film	"Short" damper	
Type of film	F_R	$F_{ au}$
π – film	$F_{R} = \mu \cdot R \cdot \frac{L^{3}}{\delta^{2}} \left[\frac{\pi}{2} \cdot \frac{1 + 2 \cdot \varepsilon^{2}}{(1 - \varepsilon^{2})^{\frac{5}{2}}} \cdot \dot{\varepsilon} + \frac{2 \cdot \Omega \cdot \varepsilon^{2}}{(1 - \varepsilon^{2})^{2}} \right]$	$F_{\tau} = \mu \cdot R \cdot \frac{L^3}{\delta^2} \left[\frac{2 \cdot \varepsilon \cdot \dot{\varepsilon}}{\left(1 - \varepsilon^2\right)^2} + \frac{\pi}{2} \cdot \frac{\varepsilon \cdot \Omega}{\left(1 - \varepsilon^2\right)^{\frac{3}{2}}} \right]$
2π - film	$F_{K} = \pi \cdot \mu \cdot R \cdot \frac{L^{3}}{\delta^{2}} \cdot \frac{1 + 2 \cdot \varepsilon^{2}}{(1 - \varepsilon^{2})^{\frac{5}{2}}} \cdot \dot{\varepsilon}$	$F_{\tau} = \pi \cdot \mu \cdot R \cdot \frac{L^3}{\delta^2} \cdot \frac{\varepsilon \cdot \Omega}{(1 - \varepsilon^2)^{\frac{3}{2}}}$
Type of film	"Long" damper	
	F_{R}	$F_{ au}$
π – film	$F_{R} = 6 \cdot \mu \cdot L \cdot \frac{R^{3}}{\delta^{2}} \left[\frac{\pi \cdot \dot{\varepsilon}}{\left(1 - \varepsilon^{2}\right)^{\frac{3}{2}}} + \frac{4 \cdot \Omega \cdot \varepsilon^{2}}{\left(2 + \varepsilon^{2}\right)\left(1 - \varepsilon^{2}\right)} \right]$	$F_{\tau} = 12 \cdot \mu \cdot L \cdot \frac{R^3}{\delta^2} \left[\frac{2 \cdot \dot{\varepsilon}}{(1 - \varepsilon^2)(1 - \varepsilon^2)} + \frac{\pi \cdot \varepsilon \cdot \Omega}{(2 + \varepsilon^2)(1 - \varepsilon^2)^{\frac{1}{2}}} \right]$
2π - film	$F_{R} = 12 \cdot \pi \cdot \mu \cdot L \cdot \frac{R^{3}}{\delta^{2}} \cdot \frac{\dot{\varepsilon}}{(1 - \varepsilon^{2})^{\frac{3}{2}}}$	$F_{\tau} = 24 \cdot \pi \cdot \mu \cdot L \cdot \frac{R^3}{\delta^2} \cdot \frac{\varepsilon \cdot \Omega}{(2 + \varepsilon^2)(1 - \varepsilon^2)^{\frac{1}{2}}}$

Fig. 5. Rotor model with disks and two supports

Fig. 6. Unbalance steady-state response plot (unbalance section)

Fig. 7 Unbalance transient response plot (ordinary Runge-Kutta method/time step 0.001 s/unbalance section)

(peak to peak /unbalance section)

(peak to peak/unbalance section)

EXAMPLES OF CALCULATIONS AND OUTPUTS – DAMPER SUPPORTS

Spring supports replaced by two squeeze-film dampers

Fig. 13 Unbalance transient response plot (unbalance section)

Fig. 16 Rotor orbits for different rotation speeds n= 1000, 1300, 2000, 4000 rpm

Fig. 17 Cascade spectra plot for rotor with two squeeze film-dampers

Sequence of Fast Fourier Transformations (Waterfall diagram)

Fig. 18 Cascade spectra plot for rotor with two squeeze film-damper

Fig.19. FFT spectrum plot