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Abstract 

The papers focuses the choice of mathematical models of squeeze film dampers and methods their 

numerical implementations for gas turbine engines rotor dynamics problems. The present 

contribution is aimed to establish criteria when or another squeeze film damper formulation should 

be used, depending on the damper characteristics and operating conditions. The models are 

grouped by the dimension of the considered physical space, i.e. three-dimensional, two-

dimensional and one-dimensional modelling patterns. The work presents the boundary conditions 

for mechanical seals to be adequately simulated. The numerical estimates for necessity of taking 

into account such physical phenomena as turbulence, fluid inertia, and cavitation are disclosed. 

The presented mathematical models are primarily developed for the computation of the integral 

characteristics of squeeze film dampers, such as reaction forces and dynamic stiffness and damping 

coefficients, required for solving rotor dynamics problems. 
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Introduction 

The Squeeze Film Dampers (SFD) are widely used in aero Gas Turbine Engines (GTE) rotor 

supports. SFD application reduces GTE vibration levels, bearing support loads, stress in GTE parts 

and assemblies. Numerous papers are concerned with analysis and experimental investigation of 

the SFD fluid flow and SFD design in rotor systems. SFD simulation and design topics may be 

found in papers [1 – 4]. 

Nevertheless, the SFD design, simulation and work analysis are still considered as 

complicated rotor system elements. In authors understanding introduction SFD into a GTE rotor 

computer model still the most complicated task. Now all advanced rotordynamics analysis 

software sets include simulation of rotors with SFD supports, more or less reflecting the actual 

object. Correct application of these tools is the user’s problem.  

The SFD model for a rotordynamics system is based on simulation of fluid flow in the 

damper clearance. The model must conform to the object together with minimal calculation 

amount needed for computation of forced performance parameters, which are required for the rotor 

system dynamics numerical modeling. 

 

Squeeze film damper model 

A principal hydrodynamic damper (fig. 1) is formed by cylindrical surfaces of a quill, or 

exciter, and the damper housing. The quill is fixed on the bearing outer ring or housing. The exciter 

does not rotate but travels together with the shaft in the whirling motion.  
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Fig. 1. Squeeze film damper principal scheme. 

In general, for an incompressible, isoviscous Newtonian fluid, laminar flow may be 

described by Navier-Stoks and continuity, or mass conservation, equations that may be presented 

in the vector form [5]: 
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here v  – velocity vector,  - specific mass, p  – static pressure, f  – body force vector, D  – 

stretching tensor.  

System (1) involves partial differential equations, which may be numerically solved 

including boundary and initial conditions with special tools, finite element, or finite volume 

methods, etc. [6]. Many code sets are concerned to hydrodynamics problems, both commercial, 

like ANSYS CFX, Fluent, or open source, OpenFOAM, CodeSaturn, etc. that may be used for this 

problem. For example, paper [7] describes SFD simulation with the CFD code of ANSYS CFX. 

The acceptable simulation accuracy could be reached at about 106 degrees of freedom, which is 

not crucial by itself but requires a remarkable calculation time. The result is a 3D flow pattern in 

the damper clearance. Available CFD tools allow description of the most specific features, 

turbulence, cavitation, temperature distortions, heat exchange with walls, at minimal set of 

assumptions. CFD is the full and potentially accurate practical simulation tool but its calculation 

amount is very large. 

The fundamental dimensional feature of the dampers may simplify the problem, the damper 

clearance is much smaller than all other damper dimensions, exciter circle length and width. 

),( 310
R

c  O   (2) 

here c  – nominal damper clearance, R – exciter radius. In 1866 under the assumption (2) Reynolds 

[8] obtained an equation that describes also sleeve bearings. A few assumptions are also involved 

here: 

a. The fluid is incompressible,  

b. The liquid viscosity is constant throughout the volume,  

c. The fluid inertia is negligible, 
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d. Turbulence effects are not considered. 

In the polar coordinates, this equation may describe the fluid film flow. 
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here R  – shaft neck radius,   – dynamic viscosity, h  - radial clearance between the shaft neck 

and the housing,   – shaft neck rotation speed, z,  – angular and axial coordinates, p  – pressure. 

Derivation of Reynolds equation from (1) is completely described, for example in [5]. 

On the contrary to sleeve bearings in dampers the shaft neck rotation is blocked, or its 

angular speed is 0, then: 
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The exciter and the housing are two parallel cylinders, their axes misalignment is not 

considered. Then the circular clearance distribution is the following: 
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here YX ,  – exciter center coordinates, YX  ,  – exciter center velocity. Equation (4) looks as  
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The partial differential equation (7) is elliptic in relation to p . Its solution requires boundary 

conditions that may be obtained from the object physical nature. A simple cylindrical damper 

evolvent (fig. 2) may be presented as the rectangular computational domain  . 

 
Fig. 2. Computational domain 

The computational domain closed, so the boundary conditions for borders 21,  must be 

periodic: 
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here n is normal to the border. The end seals type determines boundary conditions on edges e . 

Versions of end seals are shown in fig. 3. 
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Fig. 3. Types of damper end seals: a) open ends, b) piston rings, c) clearance gap seals. 

In the open ends damper (fig. 3 a) the boundary condition is the ambient pressure, usually 

the normal atmospheric, or zero excessive. Then the boundary condition is: 
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  (9) 

here ap  is the ambient pressure. In the sealed damper (fig. 3 b) the perfect case is no leakage 

through the end seals, and this boundary condition is: 
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In the clearance gap sealed damper the boundary condition is:  
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here )( pfq   - volumetric oil flow through the seal determined by the pressure drop and the seal 

hydraulic resistance. The end leakage in fig. 3 b) type damper the boundary condition (11) may be 

applied. The conditions (8) to (11) are sufficient for the equation (7). 

In realistic conditions dampers may meet effects of gas or vapor cavitation. Experimental 

investigation of the cavitation effect described in paper [9]. Gas cavitation effect is separation from 

the fluid of the gas dissolved in this fluid at pressures below the gas equilibrium. Steam cavitation 

effect is the fluid boiling at pressures below the saturation vapor pressure. In oil the saturation 

vapor pressure is usually lower than the dissolved gas equilibrium, so the gas cavitation is more 

usual. Besides this when the oil film pressure is below the ambient pressure the surrounding gas 

may penetrate into the low pressure zone. As to consider the cavitation effect the cavitation 

conditions C  must be added to the boundary conditions. 
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Approaches to cavitation zone simulation may be found in papers [10,11]. The simplest 

application is Gumbel boundary condition that assumes the oil film rupture at a negative pressure. 

Equation (7) is solved in the computational domain   and the negative pressure is assumed equal 

to zero: 

 
                  a) b)              c) 
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.0)(0)(  xpxp  (13) 

The Gumbel boundary conditions don’t provide volumetric flow conservation. The Swift – Stieber 

boundary conditions (sometimes referred as Reynolds boundary conditions) provide volumetric 

flow conservation at the cavitation zone border: 
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The Swift – Stieber conditions do not provide mass flow conservation and determine the 

cavitation zone only approximately. The mass flow is kept in other models, for example 

Jakobsson-Floberg-Olsson, Elrod cavitation models. Nevertheless, the boundary conditions (14) 

are widely used in practical analysis.  

Equation (7) with boundary conditions (8) – (11) or (14) may be solved with numerical 

methods, for example in finite differences, or finite elements, or finite volume. The problem 

solution dimension will be from a few hundred to a few thousand degrees of freedom, which is 

remarkably smaller than the CFD simulation. The Reynolds equation may be applied only to thin 

films which is sufficient for most of the damper calculations. Specific elements like the oil 

distribution groove that is much deeper than the damper clearance need a special consideration. 

Besides this a special attention must be paid to limits the base assumptions application.  

A flow in the fluid film may be of two types, laminar or turbulent. In the laminar flow the 

viscous forces prevail and mitigate all random flow fluctuations. When inertia effects overcome 

viscous ones and the flow amplifies random fluctuations the flow mode is turbulent. The flow 

mode may be determined by the Reynolds criteria that specifies the ratio of inertia and viscous 

forces. In dampers the circular flow velocity is determined by the shear flow caused by the exciter 

motion. Usually the shear flow velocity in circular direction is larger than the pressure flow 

velocity to the film ends direction. Then the turbulence occurrence may be specified with the shear 

flow Reynolds number [3, p. 282]: 
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where   - exciter oscillation frequency, e  - exciter eccentricity. It is possible to assume that a 

flow is laminar if the Reynolds number is below its critical value. Experiments have estimated the 

critical value of damper Reynolds number as 1200kRe  [3, 12]. The turbulence occurrence may 

remarkably influence the flow and must be taken into account.  

The turbulence may be considered by the modified Reynolds equation with turbulence 

correction coefficients zx kk , . 
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The correction coefficients zx kk ,  are calculated with the following thin film turbulence 

models: 

- Constantinescu’s turbulence model for thin film flows is based on the Prandtl mixing 

length hypothesis, 

- Ng-Pan-Elrod model based on the Reichardt - Clauser equations, 

- Ho-Vohr model based on the turbulence k-model, 

- Launder-Leschziner k – ε model for sleeve bearings, 

- Hirs, Black and Walton empirical drag laws. 

The fluid inertia force placed in the left part of Navier-Stocks equation (1). 
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The components in brackets are called inertia components, temporal 
t

v




  and convective 

vv  . The temporal inertia forces are caused by the fluid in clearance acceleration and may be 

remarkable at accelerated exciter motion. Thus these temporal inertia components are taken into 

account in unsteady problems. The convective components reflect local fluid accelerations and 

have smaller influence upon the damper performance [3]. They must be considered in steady state 

problems at small temporal inertia forces are combined with high rotation speeds and for low 

viscosity fluids [1]. 

In sleeve bearings two parameters may determine the inertia influences upon the final result 

[5], reduced frequency *  and reduced Reynolds number R : 
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The inertia components in equation (1) in thin films influence the final results at  1*   and 

1R . Here the three cases to be considered are the following: 

1. 0* R , 1*  – only the temporal inertia component to be considered, 

2. 0*  R , 1R  - only the convective inertia component  

3. )1(* O R , 1R - the both components to be considered, 

In dampers the shaft does not rotate, so R  and *  are generally the same numbers. In other 

works [1] this parameter is called inertia parameter, or squeeze film Reynolds number [13]. 

The system (1) solution automatically includes the inertia forces. It is complicated to reduce 

system (1) to a type (4) equation with the convective inertia component. Are known different 

methods for the inertia forces involvement, for example the velocity averaging through the layer 

thickness [5, p. 213], but these methods are not considered here. The temporal inertia component 

may be included into the Reynolds equation right part [13]: 
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Based on experimental data [1] the authors assume that the convective inertia components 

must be taken into account at 10*  . 

In dampers the oil film temperature non-uniformity mostly depends upon the following 

factors: heat release caused by the mechanical energy dissipation, oil flow through the damper and 

the housing temperature non-uniformity caused by its external heating. In open ends and clearance 

gap seal dampers a remarkable part of the produced heat is evacuated by the damper oil flow. In 

closed ends dampers the oil flow is small and the oil film temperature non-uniformity may occur. 

Analysis of this temperature non-uniformity requires additional solution of the energy 

conservation equation which remarkably complicates the problem. According to the assessment 

[1] absence of the temperature non-uniformity analysis may cause about 5% error, in sealed 

dampers the error may grow up to 60% at large eccentricity. The housing and exciter temperature 

non-uniformity may be taken from their heat analysis and also may influence the clearance oil 

flow. In this case it is necessary to consider the balance between the heat transfer between housing 
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and oil flow and the amount of heat evacuated by the oil flow. Finally, in the open end dampers 

the temperature non-uniformity is negligible, the sealed clearance dampers need this analysis. In 

sealed dampers the error due to the absence of temperature non-uniformity analysis will be below 

60% which is acceptable in many cases. In this paper we consider the average oil film temperature 

that gives correct values of the oil viscosity. 

Equation (4) is not generally solved with the analytical approach but in some cases the 

calculation time is important. Two additional assumptions may provide analytical expressions for 

the fluid film pressure distribution that will be correct at definite conditions. First, we assume that 

the circular pressure gradient is much larger than the axial one. Then the zp   component is 

negligible. This assumption is called “long damper” model, and it is correct at 2DL  [7]. For 

the “long” damper the Reynolds equation is: 
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The other assumption is the “short” damper model, i.e. the circular pressure gradient is 

smaller than the axial one. This assumption may be applied at 5.0DL  and eccentricity 75.0  

[14]. For this case the Reynolds equation is: 
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Equations (21) and (22) together with the boundary conditions (8) – (11) allow analytical 

solutions. It is important to note that above DL  range defined for open ends dampers (fig. 3 a) or 

equivalent ones (see details in reference [2]). In first assumption dampers with end seal can be 

considered like “long” without taking in to account DL  ratio, because in ideal case flow through 

seals consider equal to zero, therefore pressure gradient in z direction is also zero. Presence of 

circumferential feed grove leads to significant pressure gradient in axial direction and such damper 

could be considered like “short”. For a dampers with clearance gap seals (fig. 3 c) identification 

of applicability of analytical equations is difficult, because flow through seals and pressure 

gradient in axial direction strongly depends from end seal gap clearance and length. For these 

dampers two-dimensional Reynolds equation is preferred.  

The “short” and “long” damper models are limited by the  DL  ratio and are not used for 

the 25.0  DL  range. In this case is preferred the finite length damper model. For these 

dampers it is possible to solve the 2-D Reynolds equation that automatically takes into account 

both circular and axial flows, which gives potentially more accurate results than the 1-D models. 

Methods for analytical calculation of fluid inertia, cavitation and turbulence in “short” and “long” 

dampers discussed in reference [1].  

The cavitation effect is an important aspect of the equations (21) and (22) analytical 

solutions. Application of the Swift-Stieber conditions is complicated, so in practice are usually 

applied so-called  - film, or Gumbel conditions that reflects the half covered exciter, or  2 - 

film, or Sommerfeld conditions that reflects the completely covered exciter without cavitation. 

The choice between the  - film and the 2 - film is up to the user who is to assume the cavitation 

zone presence. In closed dampers with high oil supply pressure the cavitation zone may occur at 

higher vibrator velocities and larger eccentricity than in open ends dampers with low oil supply 

pressure. The occurrence and size of cavitation region depends from oil supply pressure, presence 

of mechanical seals, speed and eccentricity of the exciter. Some parameters allow approximate 

assessment the cavitation occurrence. The book [1] summarizes numerical calculations of the 

cavitation parameters depending from eccentricity and oil supply parameters at the exciter circular 

whirling motion. 
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here ÊA , ÊB  – cavitation parameters of a “short” closed ends damper, êA , êB  – cavitation 

parameters of a “short” open ends damper, ÄA  - cavitation parameters of a “long” damper, ce  

– dimensionless eccentricity,  2
LRPP Nê   – dimensionless oil supply parameter, 

ÍÏN PPP  , ÏP  – dimensionless oil supply pressure, ÍP  – dimensionless saturation pressure. 

The dimensionless pressure calculated by the equation: 
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At 2)( ÄÊ AA  the cavitation does not appear, the 2 -film and the complete coverage 

theory may be applied. At 1.1)( ÄÊ AA  the  -film and the half coverage theory may be applied. 

At 2)(1.1  ÄÊ AA  the cavitation effect may be calculated by the method [1], or by the numerical 

solution of the 2-D Reynolds equation with the Swift-Stieber boundary conditions, or by more 

advanced cavitation models.  

Finally the damper clearance flow simulation may be presented in 3 levels by spatial 

dimensions as the following: 

1) 3-D flow simulation with an analysis of maximal number of effects by means of 

special or general-purpose CFD codes. The advantage is the possibility to obtain a 

detailed flow pattern at the considered operating mode. This simulation disadvantage 

is the large calculation amount . 

2) 2D simulation with the Reynolds equation modified or not for additional factors 

analysis. If the assumptions don’t hurt the physical model results, the advantage is 

the much smaller calculation amount. The disadvantage is the limited application 

area, the thin film assumption requires special consideration of structural elements: 

oil pockets, oil supply channels and grooves. Considering of the fluid inertia in 

analysis is also complicated.  

3) 1-D Reynolds equation. The advantages are the analytical solution for the pressure 

distribution and minimal calculation amount. The disadvantage are the limited 

application area, poorer reliability of the physical model and all restrictions of the 

previous method is also present.  

 

Mathematical model application critetia 

It is shown above the more complicated simulation of the fluid film flow inevitably increases 

the problem dimension and the calculation time. Taking into account some factors may be not 

reasonable because of their minor influence upon the final result. Table 1 summarizes limits for 

application of 1-D models and criteria for the influencing factors. 
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Table 1. limits of simulation models application 

Flow mode Laminar  Turbulent  

1200Re  1200Re  

Calculation 

method  

“Short” damper  Finite length damper  “Long” damper  

5.0DL  

75.0  
25.0  DL  2DL  

Inertia 

consideration 

Convective component  Temporal component  

10*   1*  , unsteady problem  

Cavitation 

consideration  

« - film» Specific account « 2 -film» 

1.1)( ÄÊ AA  2)(1.1  ÄÊ AA  2)( ÄÊ AA  

 

Table 1 shows the possibility of the analytical models application or the necessity to apply 

more accurate numerical solutions. The limits for 1-D and 2-D models application, consideration 

of turbulence and inertia are taken from the initial assumptions or experiments. 

 

Conclusion 

Mathematical models of various design squeeze film dampers based on 1-D and 2-D 

Reynolds equations alike are reviewed. Limits of the models applicability in rotor dynamics 

problems are discussed. 

In the computational cost point of view, it is obvious that using of 1-D Reynolds equation 

analytical solutions is much more advantageous in comparison with numerical solving of 2-D 

Reynolds equation. In the last case, calculation time of even simple rotor systems will be greater 

about several orders than the analytical solution. However in some cases it is necessary to use 2-

D Reynolds equation, because using SFD analytical models out of its application limits may leads 

to vague results. 

Criteria for consideration of the influencing factors are discussed, which can be used by an 

engineer when choosing concrete SFD model during assembling a complete rotor system dynamic 

model. 

  



10 

 

References 

1. Belousov A.I., Balyakin V.B., Novikov D.K. Teoriya i proektirovanie 

gidrodinamicheskikh dempferov opor rotorov [Theory and Design of hydrodynamic 

dampers in rotor supports]. Samara: Samarskiy Nauchnyy Tsentr RAN Publ., 2002. 335 

p. 

2. Leontev M. K. Konstruktsiya i raschet dempfernykh opor rotorov GTD: Uchebnoe 

posobie [Design and calculation of GTE rotors damper supports: Textbook]. Moscow: 

Moscow Aviation Institute Publ., 1998. 44 p. 

3. Sergeev S. I. Dempfirovanie mekhanicheskikh kolebaniy [Damping of mechanical 

vibrations]. Moscow: Fizmatgiz Publ., 1959. 408 p. 

4. Zeidan F. Y., San Andrés L., Vance J. M. Design and application of squeeze film 

dampers in rotating machinery. Proceedings of the 25th Turbomachinery Symposium. 

1996. P. 169-188. 

5. Szeri A. Z. Fluid film lubrication. - 2nd ed. Cambridge: Cambridge University Press, 

2011. 547 p. 

6. Fletcher C.A. Computational techniques for fluid dynamics. V. 1. Fundamental and 

general techniques. New York: Springer-Verlag, 1988. 418 p. 

7. Dousti S., Gerami A., Dousti M. A numerical CFD analysis on supply groove effects in 

high pressure, open end squeeze film dampers. International Journal of Engineering 

Innovation and Research. 2016. V. 5, Iss. 1. P. 80-89. 

8. Reynolds O. On the Theory of Lubrication and Its Application to Mr. Beauchamp 

Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive 

Oil. Proceedings of the Royal Society of London. 1886. V. 40, Iss. 242–245. P. 191–203. 

9. Zeidan F. Y., Vance J. M. Cavitation Effects on the Pressure Distribution of a Squeeze 

Film Damper Bearing. Proceedings of the Texas A&M Workshop on Rotordynamic 

Instability Problem in High – Performance Turbomachinery. 1988. P. 111-132. 

10. Dowson D., Taylor C.M. Cavitation in bearings. Annual Review of Fluid Mechanics. 

1979. V. 11, Iss. 1. P. 35–65.  

11. San Andrés L. Modern Lubrication Theory. Notes 6: Cavitation in Liquid Film Bearings. 

Texas A&M University Digital Libraries, 2010. P. 15. Available at: 

http://repository.tamu.edu/handle/1969.1/93197. 

12. Nelson C.C. The effect of turbulence and fluid inertia on a squeeze film bearing damper. 

AIAA, SAE, and ASME, Joint Propulsion Conference, 16 th, Hartford, Conn, 1980. P. 5. 

13. San Andrés L. Modern Lubrication Theory. Notes 13: Squeeze Film Dampers: Operation, 

Models and Technical Issues. Texas A&M University Digital Libraries, 2010. P. 22. 

Available at: http://repository.tamu.edu/handle/1969.1/93197. 

14. San Andrés L. Modern Lubrication Theory. Notes 4: Static Load Performance of Plain 

Journal Bearings. Texas A&M University Digital Libraries, 2010. P. 15. Available at: 

http://repository.tamu.edu/handle/1969.1/93197. 

  



11 

 

Information about authors: 

 

Kutakov Maksim N., software engineer, Engineering & consulting centre for dynamic 

problems in rotating machinery Alfa-Transit, Co. Ltd. E-mail: maxim.kutakov@alfatran.com. 

Area of scientific interests: rotor dynamics, computational fluid dynamics.  

Degtiarev Sergey A., development team leader, Engineering & consulting centre for 

dynamic problems in rotating machinery Alfa-Transit, Co. Ltd. E-mail: degs@alfatran.com. Area 

of scientific interests: rotor dynamics, vibrational diagnostics.  

Leontiev Mikhail K, Doctor of science (Technical), Professor of 203 department 

«Construction and design of engines», Moscow aviation institute (national research university). 

E-mail:lemk@alfatran.com. Area of scientific interests: designing of aviation engines 

constructions, strength of constructions, rotor dynamics, vibrational diagnostics. 

mailto:maxim.kutakov@alfatran.com
mailto:support@alfatran.com
mailto:lemk@alfatran.com

