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Abstract  

Rod models of rotor systems and modal methods of their analysis are still 

in demand when solving of real-world problems of rotor dynamics of 

rotating machines.  There are some algorithms and programs of such 

models analysis. Mainly the tasks at axisymmetric statement are solved. 

At the same time there are a lot of constructions where multiple shaft 

models  of rotor systems with spatial axis position of their subsystems – 

shafts, case elements and links between them -  should be built. The 

article considers   creation of motion  equations of such systems that 

allow calculations of  joint bending-longitudinal-torsional vibrations of 

any spatial system including subsystems with parallel, skew, crossed 

axes. An example of such system calculation in the program system 

Dynamics R4 for calculation of dynamic characteristics of rotating 

machines is given. 

Key words: rotor dynamics, spatial rod systems, stiffness and inertia 

matrixes, DYNAMICS R4 

 

Introduction 

Modern tendencies in solving of rotor dynamic 

tasks of gas turbine engines determine necessity of 

calculations of joint bending-longitudinal-torsional 

vibrations for systems with spatial  location of rotation 

axes. Such systems may be found in jet engines, 

helicopters transmissions, wind setting transmissions, etc.  

Earlier versions of specialized programs for solution of 

practical tasks of rotor dynamics were used mainly to 

calculate rod systems at axisymmetric statement. Such 

statement is characterized by coaxial location of rotor and 

stator axes, axisymmetric suspension, location of inertia 

elements, etc. Work in this direction has been hold by D. 

Chronin [1], A.Ivanov, M.Leontiev [2in MAI, V.Bauyer 

[3] in CIAM and other researchers. 

Appearance of high-performance of finite-element 

program systems allowed solving of tasks taking into 

account breakdown of axial symmetry of rotor systems. 

However, their use up to nowadays has been connected 

with high laboriousness of modeling and limitations for 

analysis of nonlinear tasks at unsteady statement with such 

specific elements of rotor systems as journal bearings, 

elastic-damping supports, clearances, rolling bearings, etc.  

So algorithms and programs for modeling and analysis of 

rod rotor systems continue to be used and developed. Such 

systems are described by special elements – beams, shells, 

different types of bearings and so on. 

Coupled vibration calculation of rotor systems with 

crossed axes has high priority at modeling of systems 

including gear couplings.  In multiplying gears, reduction 

gears there may be quite a lot of shafts (subsystems), 

spaced and connected by gear pairs. Axes may be parallel 

(cylindrical gear couplings), crossed (bevel gear 

couplings), skew (hypoid gear couplings). 

The article presents mathematical models and 

algorithms of spatial rod systems calculation. An example 

of their use in the Dynamics R4 program system [4] is 

given. 

Motion  equation 

General dynamic equation for discrete linear 

oscillation systems in matrix form is usually written in this 

way: 

)(tQqKqCqM =⋅+⋅+⋅ ���  ,                    (1) 

where  M – inertia matrix, С – damping and gyroscopic 

matrix,  K – stiffness matrix,  Q – external forces matrix, q 

– displacements matrix. 

The task about eigenvalues and vectors without 

damping is described by the equation: 

0=⋅+⋅ qKqM �� .                                      (2) 

Equation (2) may be also written through flexibility 

matrix.  

0=⋅+⋅⋅ qIqMA �� ,                                     (3) 

where  A – flexibility matrix, I – identity matrix. 

Equations (2) and (3) are easily solved by the 

existing mathematical programs directly. We consider the 

case when dynamic system motion is described by 

equation (2).   

Let us examine mathematical models and 

algorithms of such matrixes creation for spatial systems 

with crossed axes of subsystems. 

 

Definition of coordinate system  

Let generalized model consist of n subsystems 

connected between themselves and with stationary 

foundation by m links. Subsystems include structural 

elements of construction, described by beam, shell and 

inertia final elements. Rotors, cases, foundations may be 

subsystems. It is supposed that axial lines of subsystems 

are crossed lines. 

Fig. 1 shows relative position of coordinate systems 

connected with the subsystems origin. The global (main) 

right Cartesian rectangular coordinate system  OXYZ, and 

with subsystems – analogous local systems (O’X’Y’Z’)
(i)

  

i=1…n. 

 
Fig. 1 

 

X (X’) and Y(Y’) axes in all subsystems are transverse 

axes, and Z(Z’) axis – a longitudinal one. Position of every 

local coordinate system relative to the main one is set by 

Ri vector and three unit vectors Cx’
(i)

, Cy’
(i)

, Cz’
(i)

. 

Vector Ri determines position of initial O’ point of the 

local coordinate system and set by the projections column 

R along the axis of main coordinate system: 
T

RzRyRxR ),,(=                                                        (4) 

Superscript T in R record means transposition 

operation in the sequel. 

Unit vectors Cx’, Cy’, Cz’  determine directions of 

corresponding local coordinate axes X’, Y’, Z’ and are set 
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by the corresponding projections columns (direction 

cosines): 

Cx’=(Cx’x, Cx’y, Cx’z)
T
; 

                         Cy’=(Cy’x, Cy’y, Cy’z)
T
;                    (5) 

Cz’=(Cz’x, Cz’y, Cz’z)
T
. 

Columns Cx’, Cy’, Cz’ form the matrix of direction 

cosines C: 

( )
















==

zCzzCyzCx

yCzyCyyCx

xCzxCyxCx

CzCyCxC

'''

'''

'''

'''
.      (6) 

Using matrix C (6), conversions of local projections into 

global projections and vice-versa for any vector V are 

written in the following way: 

V = C·V’;   V’ = C
T
·V.                         (7) 

Axes orientation of local coordinate system may be 

set by three Euler angles ψ, θ and φ, where ψ - precession 

angle (angle of initial turn of X and Y axes around Z axis); 

θ  - nutation angle (deviation angle of Z’ axis from  Z axis, 

obtained by rotation along new position of Y axis); φ – 

angle of proper rotation (rotation angle about Z’ axis of the 

coordinate system obtained as a result of previous 

operations).  

Matrix C of the direction cosines of the local 

coordinate system axes may be written through 

trigonometric functions of Euler angles (8): 
 T

C

















⋅⋅

⋅⋅+⋅⋅−⋅−⋅⋅

⋅−⋅+⋅⋅⋅−⋅⋅

−=

θψθψθ

θϕψϕψθϕψϕψθϕ

θϕψϕψθϕψϕψθϕ

cossinsincossin

sinsincoscossincossinsincoscoscossin

sincoscossinsincoscossinsincoscoscos  

(8) 

If orientation of the local system axes is set by 

consecutive rotation about X axis, intermediate position of 

Y' axis and final position of Z' axis  on α, β and γ angles 

correspondingly, so transposed matrix C 
 
may be obtained 

by multiplication of three rotation matrixes (9): 

















−

⋅














 −

⋅
















−=

αα

αα

ββ

ββ

γγ

γγ

cossin0

sincos0

001

cos0sin

010

sin0cos

100

0cossin

0sincos
TC

.   (9) 

Subsystems rotation is set by the column of angular 

speeds ( )T

nωωωω ,,, 21 …= , where iω  - angular 

rotating speed of i subsystem with '+' or '-' sign.  In the 

accepted right coordinate system the positive rotation is 

clockwise, if we look at the direction of unit vector Cz’ of 

longitudinal axis of the subsystem. Fig. 1 shows position 

of the rotating speed vector of the subsystem for positive 

rotation.  Changing the direction (sign) of rotation, 

direction of vector ω also changes. 

 

Description of spatial rod system  
Generalized model of the rod system consists of 

several spatial subsystems connected between themselves 

and stationary foundation by elastic links.  Every 

subsystem is presented as elementary parts in tandem 

separated by sections.  Any section is characterized by set 

of two indexes (s,i), where s - subsystem number, i – 

section number in subsystem, s = 1,2…nS, i=0,1…nel(s), 

nS – subsystems number, nel(s) – parts number in 

subsystem s. Parts numbers in the subsystem coincide with 

the sections numbers placed at the end of the part. 

Elementary parts of the subsystems are set by the stiffness 

matrixes )(s

ik , and inertia matrixes )s(

i1M  and )s(

i2M  
of 

initial and final sections correspondingly.  Stiffness 

matrixes are included into matrix equations of parts 
)()()( s

i

s

i

s

i Qrkq =⋅ ,             (10) 

Inertia matrixes 
)s(

i1M  and 
)s(

i2M  are included into 

matrix equations describing inertial loads of elementary 

parts applied to the first and final sections. 

                             
)s(

1i

)s(

i

)s(

1i q1MQi −− ⋅−= �� ;  

)s(

i

)s(

i

)s(

i q2MQi ��⋅−= ,                            (11) 

where )s(

1iQi −
, )s(

1iq −
�� , )s(

iQi , )s(

iq�� - columns of inertial loads 

and displacements accelerations of the first and final 

sections of the elementary part under consideration.  

Links are set by stiffness matrixes k
(L)

, which are 

included into matrix equations describing links 

deformations 
)L(

2

)L()L(

2 qkQr ⋅−= ,  L = 1,2…nL,                 (12) 

where  nL – links number; k
(L)

 -  stiffness matrix of the link 

with an order number L; 
)(

2

L
q - displacements column of 

the final section; )L(

2Qr -column of link reactions in final 

section appearing at displacements of the final section set 

by the column 
)L(

2q , under condition of restraint of the 

first section. 

The first and final section of the link coincide with 

subsystem sections set by pairs of indexes (s1, i1) and (s2, 

i2) correspondingly.  

Relative position of subsystems sections, stiffness 

and inertia matrixes of elementary parts, stiffness matrixes 

of links are set in local coordinate systems, oriented in 

certain way, relatively the global coordinate system OXYZ  

that is common for the whole system. Vectors and 

matrixes conversion because of the move from local 

coordinate systems into the global coordinate system is 

described above.  

After move into the global coordinate system, 

position of sections of s-th subsystem is set by radius-

vectors  )s(

iR , as shown in Fig. 2.   

 
Fig. 2 

Sections displacements and inner loads acting on 

the section from the part following the section, are 

presented as columns 

  








=

ϕ

u
q ;  









=

T

P
Q

,                        (13) 

where TPu ,,,ϕ - columns of projections vectors of linear 

displacements, angular displacement, force and moment on 

coordinate axes: 
T

zyx uuuu ),,(= , 
T

zyx ),,( ϕϕϕϕ = , 

T

zyx PPPP ),,(= ,  
T

zyx TTTT ),,(= . 

Links reactions Qr , inertia loads Qi and external  

loads Q∆ are given similarly: 
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







=

Tr

Pr
Qr ; 









=

Ti

Pi
Qi ;









=

T

P
Q

∆

∆
∆

 .     (14) 

Along with the shown above notations, the matrixes 

On, In, O, I, W(r) will be used in the following descriptions. 

They will be determined in this way: 

On and In – square zero and unit n-th order matrixes; 

O and I – square zero and unit matrixes whose orders are 

determined from the context; 

W(r) – antisymmetric square matrix used at matrix form of 

vector products. Matrix elements W(r) are determined by 

projections of vector r on coordinate axes 

















−

−

−

=

0rr

r0r

rr0

)r(W

YX

YZ

XZ

.                      (15) 

Taking into account accepted notations of 

coordinates, inertia matrixes of the first and final sections 

of i-th  part of subsystem s may be written as the following 

,
1J)1S(W

)1S(WI1m
1M

)s(

i

T

3)s(

i 






 ⋅
=  

)s(

1z

y

x

1S

1S

1S

1S

















=
 ; 

,
2J)2S(W

)2S(WI2m
2M

)s(

i

T

3)s(

i 






 ⋅
=

 
)s(

1z

y

x

2S

2S

2S

2S

















=
, 

where  )s(

i

)s(

i 2m,1m  - masses attached to the first and final 

section of the elementary part; 

 

- columns of vectors projections of static moments of 

masses 
)s(

i1m
and  

)s(

i2m
 relatively to the first and final 

section of the elementary part correspondingly; 
)s(

izzzyzx

yzyyyx

xzxyxx

)s(

i

1J1J1J

1J1J1J

1J1J1J

1J
















=
, 

)s(

izzzyzx

yzyyyx

xzxyxx

)s(

i

2J2J2J

2J2J2J

2J2J2J

2J
















=
- matrixes of inertia moments 

of masses 
)s(

i1m and  
)s(

i
2m

 relatively to the first and final 

section of the elementary part correspondingly. 

   

Matrix of static stiffness of elementary part  

Stiffness of  i-th elementary part of the subsystem  s 

is described by the full matrix 
)(s

iK that is included into 

matrix equation  











⋅−=










−−

)(

)(

1)(

)(

)(

1

s

i

s

is

is

i

s

i

q

q
K

Q

Q                            (16) 

Matrix 
)s(

iK  may be presented as blocks 

)(

2221

1211)(

s

i

s

i
KK

KK
K 








= .                       (17) 

 

Matrixes of static stiffness of elastic link between 

subsystems 
The whole stiffness  K

(L) 
of the elastic link with the 

order number L is determined by matrix equation  

)L(

2

1)L(

)L(

2

1

q

q
K

Q

Q








⋅−=







  ,                   (18 ) 

where 
)L()1s(

1i

)L(

1 )q(q =  и )L()2s(

2i

)L(

2 )q(q =  –columns 

of displacements of the first and final link section 

correspondingly; 
)L()1s(

1i

)L(

1 )Q(Q =  и )L()2s(

2i

)L(

2 )Q(Q = - columns of link 

reactions in the indicated sections.  

Matrix K
(L)

 may be presented as blocks  
)(

2221

1211)(

L

L

KK

KK
K 








= .                       (19) 

Blocks included into the expression (19) are 

calculated through the known stiffness matrix  K
(L)

 of the 

free final link section at the fixed first section using the 

following equations: 

DKDK
LTL ⋅⋅= )(

22

)(

11
;  )(

22

)(

12

LTL
KDK ⋅−= ; 

TLL
KK )( )(

12

)(

21 = ;    )L()L(

22 kK = ,                         (20) 

where 









=

33

3

I0

)r(WI
D

 ,    )L()1s(

1i

)L()2s(

2i )R()R(r −= ; 

)L()2s(

2i )R( and  )L()1s(

1i )R(  - radii-vectors of the first and 

final link section. 

 

Creation of stiffness matrix of dynamic system 
Full stiffness matrix of the whole system is 

obtained by superposition of stiffness matrixes of the 

elementary parts and links by common way used in all 

finite-element systems.  

Matrix of the subsystem s is obtained by 

superposition of matrixes of its elementary parts using the 

following method:  
)s(

1n,1n666

633326

6232221

661211

)s(

KOOO

OKKO

OKKK

OOKK

K























=

++�

�����

�

�

�

,            (21) 

where 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) .KK

;KKK;KK

;KK;KKK;KK

;KK;KK

)s(

)s(n22

)s(

1n,1n

)s(

311

)s(

222

)s(

33

)s(

221

)s(

32

)s(

212

)s(

23

)s(

211

)s(

122

)s(

22

)s(

121

)s(

)s(

112

)s(

12

)s(

111

)s(

21

11

=

+==

=+==

==

++�

�

  

The process of the matrix creation is shown in Fig. 

3. Full stiffness matrixes of the elementary parts having 

the size 12x12 are placed bias. Superposition places, where 

diagonal blocks of the full matrixes of the elementary parts 

are summarized, shown by darker colour and correspond 

to the stiffness matrixes of the subsystem inner sections 

dividing neighboring elementary parts. These matrixes 

have the size 6*6. 

 
Fig. 3 
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The full stiffness matrix of the system consisting of 

n unlinked subsystems is block-diagonal matrix built from 

the matrixes of the subsystems included into it 

)K,,K,K(diagK
)n()2()1(

…= .                (22) 

Fig.4 shows graphical image of such matrix.  

 

 
Fig. 4 

 

Adding of the elastic link brings to summation of 

the blocks of the whole matrix of the added link with the 

blocks of the full system matrix.  At addition of the link 

with the order number L , whose first section is section i1 

of the subsystem s1, and final section is section i2 of the 

subsystem s2, blocks are summarized in the following 

way: 

,KKK;KKK

;KKK;KKK

)L(

22

)2s,2s(

2i,2i

)2s,2s(

2i,2i

)L(

21

)1s,2s(

1i,2i

)1s,2s(

1i,2i

)L(

12

)2s,1s(

2i,1i

)2s,1s(

2i,1i

)L(

11

)1s,1s(

1i,1i

)1s,1s(

1i,1i

+⇐+⇐

+⇐+⇐

                (23) 

where superscripts are indexes of the block-diagonal 

matrix formed by the subsystems matrixes and subscripts 

are the indexes of sections singling out subunits of the 

corresponding sections inside the blocks of this matrix. 

As an example, Fig. 5 gives graphical image of 

conversion of the system whole matrix, shown in Fig.4, at 

addition of the link connecting second section of the first 

subsystem with the fifth section of the second subsystem.  

 

 
Fig. 5 

As a result of the described steps, the full matrix of 

the system static stiffness may be obtained. Using it, 

external loads Q∆  may be obtained. They should be 

applied to the systems sections in order to obtain given 

displacements q of these sections. The corresponding 

matrix equation is 

qKQ ⋅=∆ ,                               (24) 

where q – column of displacements of the all system 

sections from zero section of the first subsystem to the 

final section of the last subsystem; 

Q∆  - column of external loads corresponding to the 

displacements of the column  q.  

 

Creation of inertia matrix of dynamic system 
Full system inertia М is block-diagonal matrix 

consisting of subsystems inertia matrixes 

)M...,,M,M(diagM
)nS()2()1(= .          (25) 

Subsystems inertia matrixes are also block-diagonal 

matrixes consisting of inertia matrixes of the sections. 

Inertia matrixes of the subsystem s sections are composed 

from inertia matrixes of the elementary parts in the 

following way: 

.2MM

;1M2MM,;1M2MM;1M2MM

;1MM

)s(

)s(n

)s(

1)s(n,1)s(n

)s(

1)s(n

)s(

)s(n

)S(

)s(n),s(n

)s(

3

)s(

2

)s(

33

)s(

2

)s(

1

)s(

22

)s(

1

)s(

11

=

+=+=+=

=

++

+…

         (26) 

As a result of the described steps, the full inertia 

matrix of the system is obtained. Using it, inertial external 

loads Qi may be obtained. They should be applied to the 

system sections moving with the given accelerations  q��
 
in 

order to provide balance of the forces and moments 

applied to the system and, according to Dalamber 

principle, to go from dynamic task to the static one. The 

corresponding matrix equation is 

qMQi ��⋅−= .                          (27) 

 

Example of rod spatial system calculation 

Fig. 6 shows the dynamic system consisting of 

three rod subsystems connected by rigid links. 

 

 
Fig. 6 

 

Subsystems 1, 2 and 3 are normally disposed as it 

shown in Fig. 6. They are described by cylindrical beams 

with the following parameters: 

� beams diameter   D1=D2=D3= 50 mm; 

� beams length  L1=L3=900 мм,  L2= 1200 mm; 

� material density ρ=7850  kg/m3; 

� modulus of elasticity E=2.1·10
11

 N/m
2
; 

� Poisson's ratio µ=0.3. 
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 Table 1 

Shape 
number 

DYNAMICS R4 

FEM 

Beam 

elements 

Error 

 Hz Hz % 

1 5.304 5.303 0.02 

2 5.890 5.889 0.02 

3 16.952 16.941 0.07 

4 18.498 18.492 0.03 

5 31.504 31.490 0.04 

6 45.970 45.942 0.06 

7 103.709 103.780 -0.07 

8 125.055 125.140 -0.07 

9 220.269 221.150 -0.40 

10 220.917 221.570 -0.30 

11 257.174 257.900 -0.28 

12 259.665 260.340 -0.26 

 

Stiffness matrixes of links between subsystems are 

diagonal.  Stiffness coefficients of links at all freedom 

degrees have values of 1·10
11

  N/m, that approximate them 

to absolutely rigid links. 

Table 1 shows natural frequencies of the 

investigated spatial system, obtained according to the 

developed algorithms and in a finite-element program. The 

first 12 mode shapes are calculated.  Only cross motions 

are highlighted in the Table 2. Torsional and axial 

displacements are not shown to avoid overloading of the 

pictures. 

Table 2 

Dynamics R4 FEM 

5.304 Hz 

 

5.303 Hz 

 

5.890 Hz 

 

5.889 Hz 

 
16.952 Hz 16.941 Hz 

  

220.269 Hz 

 

221.150 Hz 

 

259.665 Hz 

 

260.340 Hz 

 

 

Comparison of the obtained results and mode 

shapes shows virtually full convergence of results.  

 

Conclusions 

Mathematical models, algorithms and a program 

modulus were developed in the Dynamics R4 program 

system for modeling and analysis of complicated spatial 

systems consisting of rod subsystems with elastic links.  

Application of these developments allows calculating of 

joint bending -longitudinal-torsional vibrations of multiple 

shaft dynamic systems taking into account spatial location 

of their shafts, cases, inertial elements, suspension, etc.  
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