Цитирование: Шапошников, К. В. Перспективы использования эластомеров в конструкциях высокооборотных микротурбин в качестве демпферов / К. В. Шапошников, М. К. Леонтьев // Проблемы и перспективы развития двигателестроения: сборник докладов Международной научно-технической конференции, Самара, 23–25 июня 2021 года. – Самара: Самарский национальный исследовательский университет имени академика С.П. Королева, 2021. – С. 112-114.

УДК 534.282+621.452.3

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ЭЛАСТОМЕРОВ В КОНСТРУКЦИЯХ ВЫСОКООБОРОТНЫХ МИКРОТУРБИН В КАЧЕСТВЕ ДЕМПФЕРОВ

<u>Шапошников К.В.</u>¹, Леонтьев М.К.²

¹Инженерно-консультационный центр по роторной динамике турбомашин OOO «Альфа-Транзит», г. Москва, kvshaposhnikov@alfatran.ru

²Московский Авиационный Институт, г. Москва

Ключевые слова: эластомеры, микротурбины, динамика роторов, демпферы, БПЛА.

В настоящее время наблюдается устойчивая мировая тенденция на развитие и создание новых беспилотных летательных аппаратов (БПЛА). Развитие технологий и появление новых материалов дает конструкторам микротурбин возможности по созданию новых современных эффективных бессмазочных демпферов, и создает перспективы по существенному снижению массы и стоимости БПЛА. Вопросами возможности применения эластомеров с круглым сечением (O-rings) в качестве демпферов для подшипников двигателей дронов еще в конце 70-х годов интересовались ведущие западные специалисты [1]. При невысоких температурах эластомеры демонстрируют отменные характеристики по жесткости и демпфированию, которые существенно снижаются с ростом температуры. Динамические характеристики для пары эластомеров из материала фторкаучука Viton 70, построенные по эмпирическим характеристикам из работы [1] показаны на Рис. 1.

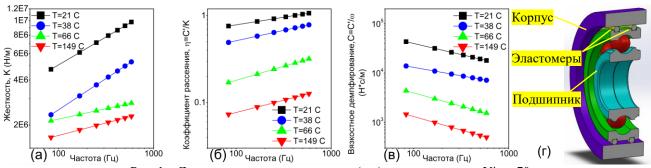


Рис. 1 – Динамические характеристики (а-в) для эластомеров Viton 70; общий вид (в) подшипникового узла с установленными эластомерами

Для анализа динамики ротора, установленного на эластомеры в качестве демпферов, была выбрана модель ротора микротурбины из учебной версии программного пакета XLRotor находящаяся в открытом доступе и описанная в книге [2] (Рис. 2). Модель была перестроена в программном пакете DYNAMICS R4. В качестве опоры I использован шариковый подшипник качения, для опоры 2 — подшипник скольжения (4-х сегментный).

Результаты сравнения вынужденных колебаний опор ротора (допустимый остаточный дисбаланс — 54 г-мм по классу точности G2.5 для жестких роторов) для расчета модели с собственными подшипниками и с теми же подшипниками снабженными демпфером с эластомерами (материал Viton 70) при его различной температуре приведены на Рис. 3.

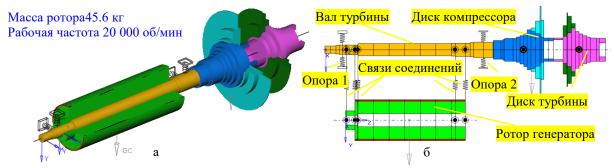


Рис. 2 – Модель ротора микротурбины с высокочастотным генератором построенная в DYNAMICS R4: а – общий вид; б – основные компоненты

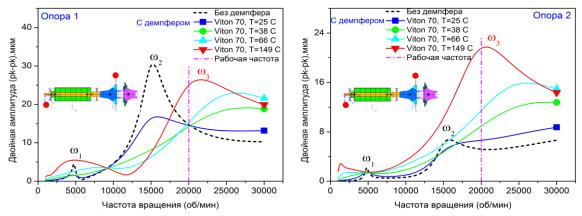


Рис. 3 – Амплитудно-частотные характеристики опор ротора микротурбины

Для модели без демпфера в рабочем диапазоне возбуждаются две критические скорости для первых 2-порядковых форм: ω_1 =4800 об/мин и ω_2 =15300 об/мин. Применение демпферов с эластомерами с рабочей температурой до 38 °C позволяет существенно снизить вибрацию по первым двум критическим скоростям. Дальнейший рост температуры влияет на существенное снижение жесткости эластомеров и появление критической скорости для 3-ей порядковой формы, которая является изгибной (ω_3 =21600 об/мин), вблизи рабочей частоты.

Анализ устойчивости ротора на рабочей частоте с применением суммарного аэродинамического возбуждения рассчитанного по формуле Уочела (Q_1 на Рис. 4, а) для диска компрессора и по формуле Алфорда (Q_2 на Рис. 4, а) для диска турбины показал неудовлетворительные результаты для модели без демпфера (δ <0,1 для формы 1),

 $T_{
m aблицa}$ 1. Применение эластомеров позволяет существенно повысить устойчивость для первой формы колебаний ротора (Рис. 4, б). Однако при T>38 °C устойчивость ротора также снижается.

Таблица 1 – Логарифмические декременты для ротора микротурбины на рабочей частоте 20 000 об/мин

Форма	Без аэродинамического возбуждения					С аэродинамическим возбуждением				
	Без демпфера	с демпфером Viton 70				Без	с демпфером Viton 70			
		T=25 °C	T=38 °C	T=66 °C	T=149 °C	демпфера	T=25 °C	T=38 °C	T=66 °C	T=149 °C
1	0.329	1.171	4.546	4.969	1.613	0.014	0.847	3.451	0.798	-1.631
2	0.707	1.454	3.505	3.636	4.856	0.707	1.454	3.006	3.644	4.845
3	7.605	4.735	2.077	1.647	1.124	7.600	4.731	2.075	1.645	1.121

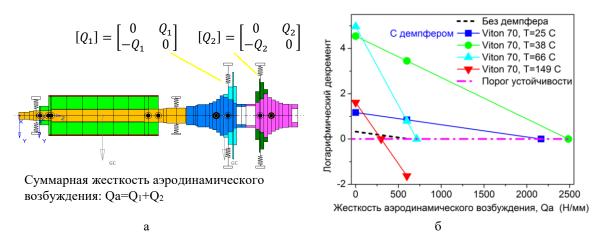


Рис. 4 – Модель для расчета устойчивости (а); карта устойчивости на рабочей частоте для первой формы (б)

Развитие технологий в области синтетических материалов позволяет предположить, что в будущем эластомеры смогут составить конкуренцию гидродинамическим демпферам. Создание надежных, эффективных и экономичных демпферов одна из первостепенных задач современного отечественного авиадвигателестроения [3].

Список литературы

- 1. Smalley A.J., Darlow M.S., Mehta R.K. The dynamic characteristics of O-rings. 1978. Pp. 132-138.
- 2. Vance J.M., Zeidan F.Y., Murphy B.G. Machinery vibration and rotordynamics. John Wiley & Sons, 2010.
- 3. Леонтьев М. К. Конструкция и расчёт демпферных опор роторов ГТД: учебное пособие. М.: Изд-во МАИ, 2020.

Сведения об авторах

Шапошников Константин Владимирович, канд. техн. наук, инженер-исследователь. Область научных интересов: роторная динамика, модальный анализ, сегментные подшипники скольжения.

Леонтьев Михаил Константинович, д-р техн. наук, профессор кафедры конструкции и проектирования двигателей Московского авиационного института. Область научных интересов: роторная динамика, математическое моделирование, проектирование демпферных опор

PERSPECTIVE OF USAGE OF ELASTOMERIC BEARING DAMPERS IN HIGH SPEED MICROTURBINES

Shaposhnikov K.V.¹, Leontiev M.K.²

¹Engineering & Consulting Centre for Dynamic Problems in Rotating Machinery, Alfa-Tranzit Co. Ltd. Moscow, Russia, kvshaposhnikov@alfatran.ru

²Moscow Aviation Institute, Moscow, Russia

Keywords: elastomeric dampers, microturbines, rotordynamics, dampers, UAV.

Recently a constant tendency for world-wide development of new unmanned aerial vehicle (UAV) is observed. Fast growth of technology and new materials development gives the designers of micro-turbines opportunity to create modern effective oil-free dampers, which allow significantly reduce the mass and the cost of UAV. The paper observes the perspective of usage of elastomeric bearing dampers on example of micro-turbine rotor observing its dynamics and stability in details.